Article ID Journal Published Year Pages File Type
4628055 Applied Mathematics and Computation 2014 12 Pages PDF
Abstract

In this paper, the definition of block independence in the generalized inverse AT,S(2) is firstly given, and then a necessary and sufficient condition for some ordered matrices to be block independent in the generalized inverse AT,S(2) is derived. As an application, a necessary and sufficient condition forA1+A2+⋯+AkT,S(2)=A1T1,S1(2)+A2T2,S2(2)+⋯+AkTk,Sk(2)is proved. Moreover, some results are shown with respect to the Moore–Penrose inverse, the Weighted Moore–Penrose inverse and the Drazin inverse, respectively.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, ,