Article ID Journal Published Year Pages File Type
4628637 Applied Mathematics and Computation 2013 10 Pages PDF
Abstract

A mathematical model for DNA damage induced G2 phase transition is developed by integrating DNA damage signal pathway and G2 regulatory network. We have systematical identified the necessary parameters to be used in the mathematical analysis. Numerical studies are performed to investigate the dynamics of p53-Mdm2 feedback loop and evaluate the effect of DNA damage on G2 phase under various conditions. These studies are carried out to identify the important checkpoint and kinetic dynamics in G2 phase under the presence and absence of DNA damages. The predicted results are in consistent with biological findings. The mathematical model will be able to predict the dynamic behaviors of cellular networks in response to DNA damage in G2 phase under different damage conditions.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, , ,