Article ID Journal Published Year Pages File Type
4629301 Applied Mathematics and Computation 2013 11 Pages PDF
Abstract

Homogenization of a simultaneous heat and moisture flow in a masonry wall is presented in this paper. The principle objective is to examine an impact of the assumed imperfect hydraulic contact on the resulting homogenized properties. Such a contact is characterized by a certain mismatching resistance allowing us to represent a discontinuous evolution of temperature and moisture fields across the interface, which is in general attributed to discontinuous capillary pressures caused by different pore size distributions of the adjacent porous materials. In achieving this, two particular laboratory experiments were performed to provide distributions of temperature and relative humidity in a sample of the masonry wall, which in turn served to extract the corresponding jumps and subsequently to obtain the required interface transition parameters by matching numerical predictions and experimental results. The results suggest a low importance of accounting for imperfect hydraulic contact for the derivation of macroscopic homogenized properties. On the other hand, they strongly support the need for a fully coupled multi-scale analysis due to significant dependence of the homogenized properties on actual moisture gradients and corresponding values of both macroscopic temperature and relative humidity.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, , ,