Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4629852 | Applied Mathematics and Computation | 2012 | 5 Pages |
Abstract
We show that all positive solutions to the system of max-type difference equationsxn(1)=max1⩽i⩽m1f1ixn-ki,1(1)(1),xn-ki,2(1)(2),â¦,xn-ki,l(1)(l),n,xn-s(1),xn(2)=max1⩽i⩽m2f2ixn-ki,1(2)(1),xn-ki,2(2)(2),â¦,xn-ki,l(2)(l),n,xn-s(2),â®xn(l)=max1⩽i⩽mlflixn-ki,1(l)(1),xn-ki,2(l)(2),â¦,xn-ki,l(l)(l),n,xn-s(l),nâN0, where s,l,mj,ki,t(j)âN, j,tâ{1,â¦,l}, and for a fixed j, iâ{1,â¦,mj}, and where the functions fji:(0,â)lÃN0â(0,â), jâ{1,â¦,l},iâ{1,â¦,mj}, satisfy some conditions, are eventually periodic with (not necessarily prime) period s. A related result for the corresponding system of min-type difference equations is also proved.
Keywords
Related Topics
Physical Sciences and Engineering
Mathematics
Applied Mathematics
Authors
Stevo SteviÄ,