Article ID Journal Published Year Pages File Type
4629936 Applied Mathematics and Computation 2012 9 Pages PDF
Abstract

An algorithm for an extended reactive dynamic user equilibrium model of pedestrian counterflow as a continuum is developed. It is based on a cell-centered high-resolution finite volume scheme with a fast sweeping method for an Eikonal-type equation on an orthogonal grid. A high-order total variation diminishing Runge–Kutta method is adopted for the time integration of semi-discrete equations. The numerical results demonstrate the rationality of the model and efficiency of the algorithm. Some crowd pedestrian flow phenomena, such as dynamic lane formation in bi-directional flow, are observed which are helpful for a global comprehension of pedestrian dynamics. Also, the model can be utilized with different potential applications.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, , , , , ,