Article ID Journal Published Year Pages File Type
4630151 Applied Mathematics and Computation 2011 15 Pages PDF
Abstract
We consider an inverse problem for identifying a leading coefficient α(x) in −(α(x)y′(x))′ + q(x)y(x) = H(x), which is known as an inverse coefficient problem for the Sturm-Liouville operator. We transform y(x) to u(x, t) =  (1 + t)y(x) and derive a parabolic type PDE in a fictitious time domain of t. Then we develop a Lie-group adaptive method (LGAM) to find the coefficient function α(x). When α(x) is a continuous function of x, we can identify it very well, by giving boundary data of y, y′ and α. The efficiency of LGAM is confirmed by comparing the numerical results with exact solutions. Although the data used in the identification are limited, we can provide a rather accurate solution of α(x).
Keywords
Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
,