Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4630167 | Applied Mathematics and Computation | 2011 | 13 Pages |
Consider a GI/M/1 queue with start-up period and single working vacation. When the system is in a closed state, an arriving customer leading to a start-up period, after the start-up period, the system becomes a normal service state. And during the working vacation period, if there are customers at a service completion instant, the vacation can be interrupted and the server will come back to the normal working level with probability p (0 ⩽ p ⩽ 1) or continue the vacation with probability 1 − p. Meanwhile, if there is no customer when a vacation ends, the system is closed. Using the matrix-analytic method, we obtain the steady-state distributions for the queue length at both arrival epochs and arbitrary epochs, the waiting time and sojourn time.