Article ID Journal Published Year Pages File Type
4630344 Applied Mathematics and Computation 2011 12 Pages PDF
Abstract

We consider a plankton–nutrient interaction model consisting of phytoplankton, zooplankton and dissolved limiting nutrient with general nutrient uptake functions and instantaneous nutrient recycling. In this model, it is assumed that phytoplankton releases toxic chemical for self defense against their predators. The model system is studied analytically and the threshold values for the existence and stability of various steady states are worked out. It is observed that if the maximal zooplankton conversion rate crosses a certain critical value, the system enters into Hopf bifurcation. Finally it is observed that to control the planktonic bloom and to maintain stability around the coexistence equilibrium we have to control the nutrient input rate specially caused by artificial eutrophication. In case if it is not possible to control the nutrient input rate, one could use toxic phytoplankton to prevent the recurrence bloom.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, , ,