Article ID Journal Published Year Pages File Type
4630419 Applied Mathematics and Computation 2011 9 Pages PDF
Abstract

In this paper, a variable-coefficient Jacobi elliptic function expansion method is proposed to seek more general exact solutions of nonlinear partial differential equations. Being concise and straightforward, this method is applied to the (2+1)-dimensional Nizhnik–Novikov–Vesselov equations. As a result, many new and more general exact non-travelling wave and coefficient function solutions are obtained including Jacobi elliptic function solutions, soliton-like solutions and trigonometric function solutions. To give more physical insights to the obtained solutions, we present graphically their representative structures by setting the arbitrary functions in the solutions as specific functions.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, ,