Article ID Journal Published Year Pages File Type
4630469 Applied Mathematics and Computation 2012 11 Pages PDF
Abstract
Our main aim is the accurate computation of a large number of specified eigenvalues and eigenvectors of Mathieu's system as a multiparameter eigenvalue problem (MEP). The reduced wave equation, for small deflections, is solved directly without approximations introduced by the classical Mathieu functions. We show how for moderate values of the cut-off collocation parameter the QR algorithm and the Arnoldi method may be applied successfully, while for larger values the Jacobi-Davidson method is the method of choice with respect to convergence, accuracy and memory usage.
Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, , , ,