Article ID Journal Published Year Pages File Type
4630488 Applied Mathematics and Computation 2012 10 Pages PDF
Abstract

The present paper deals with the response due to periodically varying heat sources in the neighborhood of the origin of a functionally graded isotropic unbounded microelongated medium, in the context of generalized thermoelastic theory. The expressions for displacement, microelongation and temperature fields have been obtained in Laplace–Fourier transformed domain. After computing the inverse Fourier transforms by contour integration technique, the inversion of Laplace transforms has been obtained numerically. The changes of displacement, microelongation, and normal strain have been shown graphically for different types of heat source.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, ,