Article ID Journal Published Year Pages File Type
4630498 Applied Mathematics and Computation 2012 12 Pages PDF
Abstract
A few variants of the secant method for solving nonlinear equations are analyzed and studied. In order to compute the local order of convergence of these iterative methods a development of the inverse operator of the first order divided differences of a function of several variables in two points is presented using a direct symbolic computation. The computational efficiency and the approximated computational order of convergence are introduced and computed choosing the most efficient method among the presented ones. Furthermore, we give a technique in order to estimate the computational cost of any iterative method, and this measure allows us to choose the most efficient among them.
Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, ,