Article ID Journal Published Year Pages File Type
4630651 Applied Mathematics and Computation 2011 6 Pages PDF
Abstract
Recently, Srivastava et al. introduced a new generalization of the Bernoulli, Euler and Genocchi polynomials (see [H.M. Srivastava, M. Garg, S. Choudhary, Russian J. Math. Phys. 17 (2010) 251-261] and [H.M. Srivastava, M. Garg, S. Choudhary, Taiwanese J. Math. 15 (2011) 283-305]). They established several interesting properties of these general polynomials, the generalized Hurwitz-Lerch zeta functions and also in series involving the familiar Gaussian hypergeometric function. By the same motivation of Srivastava's et al. [11,12], we introduce and derive multiplication formula and some identities related to the generalized Bernoulli type polynomials of higher order associated with positive real parameters a, b and c. We also establish multiple alternating sums in terms of these polynomials. Moreover, by differentiating the generating function of these polynomials, we give a interpolation function of these polynomials.
Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, ,