Article ID Journal Published Year Pages File Type
4630782 Applied Mathematics and Computation 2011 11 Pages PDF
Abstract

Nonlinear partial differential equation with random Neumann boundary conditions are considered. A stochastic Taylor expansion method is derived to simulate these stochastic systems numerically. As examples, a nonlinear parabolic equation (the real Ginzburg–Landau equation) and a nonlinear hyperbolic equation (the sine–Gordon equation) with random Neumann boundary conditions are solved numerically using a stochastic Taylor expansion method. The impact of boundary noise on the system evolution is also discussed.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, ,