Article ID Journal Published Year Pages File Type
4631113 Applied Mathematics and Computation 2011 16 Pages PDF
Abstract

The particle swarm optimization (PSO) computational method has recently become popular. However, it has limitations. It may trap into local optima and cause the premature convergence phenomenon, especially for multimodal and high-dimensional problems. In this paper, we focus on investigating the fitness evaluation in terms of a particle’s position. Particularly, we find that the fitness evaluation strategy in the standard PSO has two drawbacks, i.e., “two steps forward and one step back” and “two steps back and one step forward”. In addition, we propose a general fitness evaluation strategy (GFES), by which a particle is evaluated in multiple subspaces and different contexts in order to take diverse paces towards the destination position. As demonstrations of GFES, a series of PSOs with GFES are presented. Experiments are conducted on several benchmark optimization problems. The results show that GFES is effective at handling multimodal and high-dimensional problems.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, , , ,