Article ID Journal Published Year Pages File Type
4631287 Applied Mathematics and Computation 2011 17 Pages PDF
Abstract
Ratio-dependent predator-prey models have been increasingly favored by field ecologists where predator-prey interactions have to be taken into account the process of predation search. In this paper we study the conditions of the existence and stability properties of the equilibrium solutions in a reaction-diffusion model in which predator mortality is neither a constant nor an unbounded function, but it is increasing with the predator abundance. We show that analytically at a certain critical value a diffusion driven (Turing type) instability occurs, i.e. the stationary solution stays stable with respect to the kinetic system (the system without diffusion). We also show that the stationary solution becomes unstable with respect to the system with diffusion and that Turing bifurcation takes place: a spatially non-homogenous (non-constant) solution (structure or pattern) arises. A numerical scheme that preserve the positivity of the numerical solutions and the boundedness of prey solution will be presented. Numerical examples are also included.
Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, , ,