Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4631455 | Applied Mathematics and Computation | 2010 | 4 Pages |
Abstract
System of kinematical conservation laws (KCL) govern evolution of a curve in a plane or a surface in space, even if the curve or the surface has singularities on it. In our recent publication [K.R. Arun, P. Prasad, 3-D kinematical conservation laws (KCL): evolution of a surface in R3-in particular propagation of a nonlinear wavefront, Wave Motion 46 (2009) 293-311] we have developed a mathematical theory to study the successive positions and geometry of a 3-D weakly nonlinear wavefront by adding an energy transport equation to KCL. The 7Â ÃÂ 7 system of equations of this KCL based 3-D weakly nonlinear ray theory (WNLRT) is quite complex and explicit expressions for its two nonzero eigenvalues could not be obtained before. In this short note, we use two different methods: (i) the equivalence of KCL and ray equations and (ii) the transformation of surface coordinates, to derive the same exact expressions for these eigenvalues. The explicit expressions for nonzero eigenvalues are important also for checking stability of any numerical scheme to solve 3-D WNLRT.
Related Topics
Physical Sciences and Engineering
Mathematics
Applied Mathematics
Authors
K.R. Arun, Phoolan Prasad,