Article ID Journal Published Year Pages File Type
4631492 Applied Mathematics and Computation 2011 13 Pages PDF
Abstract

Many constrained sets in problems such as signal processing and optimal control can be represented as a fixed point set of a certain nonexpansive mapping, and a number of iterative algorithms have been presented for solving a convex optimization problem over a fixed point set. This paper presents a novel gradient method with a three-term conjugate gradient direction that is used to accelerate conjugate gradient methods for solving unconstrained optimization problems. It is guaranteed that the algorithm strongly converges to the solution to the problem under the standard assumptions. Numerical comparisons with the existing gradient methods demonstrate the effectiveness and fast convergence of this algorithm.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
,