Article ID Journal Published Year Pages File Type
4631558 Applied Mathematics and Computation 2011 11 Pages PDF
Abstract

In this paper we consider the decomposition for the nonlinearity in a differential equation for the solution by decomposition. By analyzing and transforming the Taylor expansion of the nonlinearity about the initial solution component, the decomposition of the nonlinearity is converted to the partitions of the solution sets for a class of Diophantine equations. This conversion simplifies the discussion and presents a new idea for decompositions. We enumerate five types of partitions and their corresponding decomposition polynomials. Each of the last four types contains infinitely many kinds of decomposition polynomials in the form of finite sums. In Types 2, 3 and 4, there is a parameter q and each value of q corresponds to a class of decomposition polynomials. In Type 5, each positive integer sequence {cj} satisfying 1 = c1 ⩽ c2 ⩽ ⋯ and j ⩽ cj for j = 2, 3, … corresponds to a class of decomposition polynomials. Four classes of the Adomian polynomials [R. Rach, A new definition of the Adomian polynomials, Kybernetes 37 (2008) 910–955] are derived as particular cases.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
,