Article ID Journal Published Year Pages File Type
4631571 Applied Mathematics and Computation 2011 10 Pages PDF
Abstract

A discretization algorithm is proposed by Haar wavelet approximation theory for the fractional order integral. In this paper, the integration time is divided into two parts, one presents the effect of the past sampled data, calculated by the iterative method, and the other presents the effect of the recent sampled data at a fixed time interval, calculated by the Haar wavelet. This method can reduce the amount of the stored data effectively and be applied to the design of discrete-time fractional order PID controllers. Finally, several numerical examples and simulation results are given to illustrate the validity of this discretization algorithm.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, ,