Article ID Journal Published Year Pages File Type
4631580 Applied Mathematics and Computation 2011 14 Pages PDF
Abstract
Two autonomous, nonlinear, third-order ordinary differential equations whose dynamics can be represented by second-order nonlinear ordinary differential equations for the first-order derivative of the solution are studied analytically and numerically. The analytical study includes both the obtention of closed-form solutions and the use of an artificial parameter method that provides approximations to both the solution and the frequency of oscillations. It is shown that both the analytical solution and the accuracy of the artificial parameter method depend greatly on the sign of the nonlinearities and the initial value of the first-order derivative.
Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, ,