Article ID Journal Published Year Pages File Type
4631618 Applied Mathematics and Computation 2010 17 Pages PDF
Abstract

Many real life problems can be modeled as nonlinear discrete optimization problems. Such problems often have multiple local minima and thus require global optimization methods. Due to high complexity of these problems, heuristic based global optimization techniques are usually required when solving large scale discrete optimization or mixed discrete optimization problems. One of the more recent global optimization tools is known as the discrete filled function method. Nine variations of the discrete filled function method in literature are identified and a review on theoretical properties of each method is given. Some of the most promising filled functions are tested on various benchmark problems. Numerical results are given for comparison.

Keywords
Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, ,