Article ID Journal Published Year Pages File Type
4631678 Applied Mathematics and Computation 2010 12 Pages PDF
Abstract

In this paper, vibrations and stability of an axially traveling laminated composite beam are investigated analytically via the method of multiple scales. Based on classical laminated beam theory, the governing equations of motion for a time-variant axial speed are obtained using Newton’s second law of motion and constitutive relations. The method of multiple scales, an approximate analytical method, is applied directly to the gyroscopic governing equations of motion and complex eigenfunctions and natural frequencies of the system are obtained. The stability boundaries of the system near resonance are determined via the Routh–Hurwitz criterion. Finally, a parametric study is conducted which considers the effects of laminate type and configuration as well as the mean speed and amplitude of speed fluctuations on the vibration response, natural frequencies and stability boundaries of the system.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, , , ,