Article ID Journal Published Year Pages File Type
4631764 Applied Mathematics and Computation 2010 6 Pages PDF
Abstract
In this paper, we study the Korteweg-de Vries (KdV) equation having time dependent coefficients from the Lie symmetry point of view. We obtain Lie point symmetries admitted by the equation for various forms for the time-dependent coefficients. We use the symmetries to construct the group-invariant solutions for each of the cases of the arbitrary coefficients. Subsequently, the 1-soliton solution is obtained by the aid of solitary wave ansatz method. It is observed that the soliton solution will exist provided that these time-dependent coefficients are all Riemann integrable.
Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, , ,