Article ID Journal Published Year Pages File Type
4631878 Applied Mathematics and Computation 2010 6 Pages PDF
Abstract
The construction of a class of three-point methods for solving nonlinear equations of the eighth order is presented. These methods are developed by combining fourth order methods from the class of optimal two-point methods and a modified Newton's method in the third step, obtained by a suitable approximation of the first derivative based on interpolation by a nonlinear fraction. It is proved that the new three-step methods reach the eighth order of convergence using only four function evaluations, which supports the Kung-Traub conjecture on the optimal order of convergence. Numerical examples for the selected special cases of two-step methods are given to demonstrate very fast convergence and a high computational efficiency of the proposed multipoint methods. Some computational aspects and the comparison with existing methods are also included.
Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, , ,