Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4631892 | Applied Mathematics and Computation | 2011 | 16 Pages |
Abstract
By means of the barycentric coordinates expression of the interpolating polynomial over each ortho-triple, some properties are obtained. Moreover, the explicit coefficients in terms of B-net for one ortho-triple, and two ortho-triples are worked out, respectively. Thus the computation of multiple integrals can be converted into the sum of the coefficients in terms of the B-net over triangular domain much effectively and conveniently. Based on a new symmetrical algorithm of partial inverse differences, a novel continued fractions interpolation scheme is presented over arbitrary ortho-triples in R2, which is a bivariate osculatory interpolation formula with one-order partial derivatives at all corner points in the ortho-triples. Furthermore, its characterization theorem is presented by three-term recurrence relations. The new scheme is advantageous over the polynomial one with some numerical examples.
Keywords
Related Topics
Physical Sciences and Engineering
Mathematics
Applied Mathematics
Authors
Ren-Hong Wang, Jiang Qian,