Article ID Journal Published Year Pages File Type
4632007 Applied Mathematics and Computation 2010 10 Pages PDF
Abstract

Starting from the solutions of soliton equations and corresponding eigenfunctions obtained by Darboux transformation, we present a new method to solve soliton equations with self-consistent sources (SESCS) based on method of variation of parameters. The KdV equation with self-consistent sources (KdVSCS) is used as a model to illustrate this new method. In addition, we apply this method to construct some new solutions of the derivative nonlinear Schrödinger equation with self-consistent sources (DNLSSCS) such as phase solution, dark soliton solution, bright soliton solution and breather-type solution.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, , , ,