Article ID Journal Published Year Pages File Type
4632363 Applied Mathematics and Computation 2010 10 Pages PDF
Abstract
A Volterra integral formulation based on the introduction of a term proportional to the velocity times the square of the (unknown) frequency of oscillation, a new independent variable equal to the original one times the (unknown) frequency of oscillation, the method of variation of parameters and series expansions of both the solution and the frequency of oscillation, is used to determine the periodic solutions to three nonlinear, autonomous, third-order, ordinary differential equations. It is shown that the first term of the series expansion of the frequency of oscillation coincides with that determined from a first-order harmonic balance procedure, whereas the two-term approximation to the frequency of oscillation is shown to be more accurate than that of a parameter perturbation procedure for the second equation considered in this paper. For the third equation, it is shown that the two-term approximation presented in this paper is more accurate than the corresponding one for one of the parameter perturbation methods, and for initial velocities less than one, for the other parameter perturbation approach.
Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, ,