Article ID Journal Published Year Pages File Type
4632391 Applied Mathematics and Computation 2010 13 Pages PDF
Abstract

This article presents a time-accurate numerical method using high-order accurate compact finite difference scheme for the incompressible Navier–Stokes equations. The method relies on the artificial compressibility formulation, which endows the governing equations a hyperbolic–parabolic nature. The convective terms are discretized with a third-order upwind compact scheme based on flux-difference splitting, and the viscous terms are approximated with a fourth-order central compact scheme. Dual-time stepping is implemented for time-accurate calculation in conjunction with Beam-Warming approximate factorization scheme. The present compact scheme is compared with an established non-compact scheme via analysis in a model equation and numerical tests in four benchmark flow problems. Comparisons demonstrate that the present third-order upwind compact scheme is more accurate than the non-compact scheme while having the same computational cost as the latter.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, , ,