Article ID Journal Published Year Pages File Type
4632438 Applied Mathematics and Computation 2011 8 Pages PDF
Abstract

The complexity of a nonlinear dynamical system is controllable via a selection of system parameters. One representative behavior of such a complex system can be illustrated by Hopf bifurcation. This paper presents a Hopf bifurcation analysis of a kind of integro-differential equations with unbounded delay. Based on the Hopf bifurcation principle, a set of relationships among system parameters are obtained when a periodic orbit exists in the system. A numerical analysis is applied to solve the integro-differential delay equation. This paper proves the existence of Hopf bifurcation in the corresponding difference equations under the same system parameters as that in the integro-differential delay equations.

Keywords
Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, , ,