Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4632470 | Applied Mathematics and Computation | 2009 | 8 Pages |
Abstract
We introduce a new composite iterative scheme by viscosity approximation method for finding a common point of the set of solutions of an equilibrium problem and the set of fixed points of a nonexpansive mapping in a Hilbert space. It is proved that the sequence generated by the iterative scheme converges strongly to a common point of the set of solutions of an equilibrium problem and the set of fixed points of a nonexpansive mapping. Our results substantially improve the corresponding results of Takahashi and Takahashi [A. Takahashi, W. Takahashi, Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces, J. Math. Anal. Appl. 331 (2007) 506-515]. Essentially a new approach for finding solutions of equilibrium problems and the fixed points of nonexpansive mappings is provided.
Keywords
Related Topics
Physical Sciences and Engineering
Mathematics
Applied Mathematics
Authors
Jong Soo Jung,