Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4632566 | Applied Mathematics and Computation | 2009 | 6 Pages |
Abstract
In this paper, we establish exact solutions for (2 + 1)-dimensional nonlinear evolution equations. The sine–cosine method is used to construct exact periodic and soliton solutions of (2 + 1)-dimensional nonlinear evolution equations. Many new families of exact traveling wave solutions of the (2 + 1)-dimensional Boussinesq, breaking soliton and BKP equations are successfully obtained. These solutions may be important of significance for the explanation of some practical physical problems. It is shown that the sine–cosine method provides a powerful mathematical tool for solving a great many nonlinear partial differential equations in mathematical physics.
Related Topics
Physical Sciences and Engineering
Mathematics
Applied Mathematics
Authors
Filiz Taşcan, Ahmet Bekir,