Article ID Journal Published Year Pages File Type
4632598 Applied Mathematics and Computation 2009 8 Pages PDF
Abstract

Transient electro-osmotic flow of viscoelastic fluids in rectangular micro-channels is investigated. The general twofold series solution for the velocity distribution of electro-osmotic flow of viscoelastic fluids with generalized fractional Oldroyd-B constitutive model is obtained by using finite Fourier and Laplace transforms. Under three limiting cases, the generalized Oldroyd-B model simplifies to Newtonian model, fractional Maxwell model and generalized second grade model, where all the explicit exact solutions for velocity distribution are found through the discrete Laplace transform of the sequential fractional derivatives. These exact solutions may be able to predict the flow behavior of viscoelastic biological fluids in BioMEMS and Lab-on-a-chip devices and thus could benefit the design of these devices.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, ,