Article ID Journal Published Year Pages File Type
4632652 Applied Mathematics and Computation 2010 9 Pages PDF
Abstract

Min-protein oscillation in Escherichia coli has an essential role in controlling the accurate placement of the cell division septum at the middle-cell zone of the bacteria. This biochemical process has been successfully described by a set of reaction–diffusion equations at the macroscopic level. The lattice Boltzmann method (LBM) has been used to simulate Min-protein oscillation and proved to recover the correct macroscopic equations. In this present work, we studied the effects of LBM boundary conditions (BC) on Min-protein oscillation. The impact of diffusion and reaction dynamics on BCs was also investigated. It was found that the mirror-image BC is a suitable boundary treatment for this Min-protein model. The physical significance of the results is extensively discussed.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, , , , ,