Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4632775 | Applied Mathematics and Computation | 2009 | 5 Pages |
Abstract
We prove that every positive solution to the difference equationxn=maxA1xn-1α1,A2xn-2α2,…,Akxn-kαk,n∈N0,where k∈N,Ai>0,αi∈(0,1)k∈N,Ai>0,αi∈(0,1), i=1,…,ki=1,…,k, converges to the following quantity maxA11α1+1,…,Ak1αk+1, confirming a quite recent conjecture of interest. We also prove another result on global convergence which concerns some cases when not all αi,i=1,…,kαi,i=1,…,k belong to the interval (0, 1).
Related Topics
Physical Sciences and Engineering
Mathematics
Applied Mathematics
Authors
Stevo Stević,