Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4632846 | Applied Mathematics and Computation | 2009 | 15 Pages |
A new kind of analytic technique, namely the homotopy analysis method (HAM), is employed to give an explicit analytical solution of the steady two-dimensional stagnation-point flow of an electrically conducting power-law fluid over a stretching surface when the surface is stretched in its own plane with a velocity proportional to the distance from the stagnation-point. A uniform transverse magnetic field is applied normal to the surface. An explicit analytical solution is given by recursive formulae for the first-order power-law (Newtonian) fluid when the ratio of free stream velocity and stretching velocity is not equal to unity. For second and real order power-law fluids, an analytical approach is proposed for magnetic field parameter in a quite large range. All of our analytical results agree well with numerical results. The results obtained by HAM suggest that the solution of the problem under consideration converges.