Article ID Journal Published Year Pages File Type
4632854 Applied Mathematics and Computation 2009 15 Pages PDF
Abstract
We search for exact travelling wave solutions of the generalized Bretherton equation for integer, greater than one, values of the exponent m of the nonlinear term by two methods: the truncated Painlevé expansion method and an algebraic method. We find periodic solutions for m=2 and m=5, to add to those already known for m=3; in all three cases these solutions exist for finite intervals of the wave velocity. We also find a “kink” shaped solitary wave for m=5 and a family of elementary unbounded solutions for arbitrary m.
Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
,