Article ID Journal Published Year Pages File Type
4632891 Applied Mathematics and Computation 2009 7 Pages PDF
Abstract
We study the bifurcation of limit cycles from the periodic orbits of a linear differential system in R4 in resonance 1:n perturbed inside a class of piecewise linear differential systems, which appear in a natural way in control theory. Our main result shows that at most 1 limit cycle can bifurcate using expansion of the displacement function up to first order with respect to a small parameter. This upper bound is reached. For proving this result we use the averaging theory in a form where the differentiability of the system is not needed.
Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, ,