Article ID Journal Published Year Pages File Type
4632902 Applied Mathematics and Computation 2009 16 Pages PDF
Abstract

We present an algorithm for computing exact shortest paths, and consequently distance functions, from a generalized source (point, segment, polygonal chain or polygonal region) on a possibly non-convex triangulated polyhedral surface. The algorithm is generalized to the case when a set of generalized sites is considered, providing their distance field that implicitly represents the Voronoi diagram of the sites. Next, we present an algorithm to compute a discrete representation of the distance function and the distance field. Then, by using the discrete distance field, we obtain the Voronoi diagram of a set of generalized sites (points, segments, polygonal chains or polygons) and visualize it on the triangulated surface. We also provide algorithms that, by using the discrete distance functions, provide the closest, furthest and k-order Voronoi diagrams and an approximate 1-Center and 1-Median.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, ,