Article ID Journal Published Year Pages File Type
4633041 Applied Mathematics and Computation 2009 8 Pages PDF
Abstract

This paper investigates the numerical solutions of singular second order three-point boundary value problems using reproducing kernel Hilbert space method. It is a relatively new analytical technique. The solution obtained by using the method takes the form of a convergent series with easily computable components. However, the reproducing kernel Hilbert space method cannot be used directly to solve a singular second order three-point boundary value problem, so we convert it into an equivalent integro-differential equation, which can be solved using reproducing kernel Hilbert space method. Four numerical examples are given to demonstrate the efficiency of the present method. The numerical results demonstrate that the method is quite accurate and efficient for singular second order three-point boundary value problems.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
,