| Article ID | Journal | Published Year | Pages | File Type |
|---|---|---|---|---|
| 4633325 | Applied Mathematics and Computation | 2009 | 8 Pages |
Abstract
We provide sufficient conditions for the semilocal convergence of Newton's method to a locally unique solution of a nonlinear operator equation containing operators that are Fréchet-differentiable of order at least two, in a Banach space setting. Numerical examples are also provided to show that our results apply to solve nonlinear equations in cases earlier ones cannot [J.M. Gutiérrez, A new semilocal convergence theorem for Newton's method, J. Comput. Appl. Math. 79(1997) 131-145; Z. Huang, A note of Kantorovich theorem for Newton iteration, J. Comput. Appl. Math. 47 (1993) 211-217; F.A. Potra, Sharp error bounds for a class of Newton-like methods, Libertas Mathematica 5 (1985) 71-84].
Related Topics
Physical Sciences and Engineering
Mathematics
Applied Mathematics
Authors
Ioannis K. Argyros,
