Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4633510 | Applied Mathematics and Computation | 2009 | 5 Pages |
Abstract
Let E be a real reflexive Banach space, Eâ the dual space of E, and ΩâE an open bounded subset, and let Ti:D(Ti)â2Eâ, i=1,2, be two maximal monotone mappings such that Ω¯â©D(T1)â©D(T2)â â
and 0ââªtâ[0,1][tT1+(1-t)T2](âΩâ©(D(T1)âªD(T2))). Under some additional assumptions we prove that deg(T1,D(T1)â©Î©,0)=deg(T2,D(T2)â©Î©,0).
Keywords
Related Topics
Physical Sciences and Engineering
Mathematics
Applied Mathematics
Authors
Yuqing Chen, Donal O'Regan,