Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4633579 | Applied Mathematics and Computation | 2008 | 8 Pages |
Abstract
Smoothing-type algorithms have been applied to solve various optimization problems. In the analysis on the global convergence, most existing smoothing-type algorithms need to assume that the solution set of the problem concerned is nonempty and bounded or some stronger conditions. In this paper, we investigate a smoothing-type algorithm for solving the monotone affine variational inequality problem (AVIP). Specially, we reformulate the AVIP as a system of parameterized smooth equations, and instead of solving the original AVIP, we use a Newton-type method to solve the smooth equations. We show that under mild assumptions, the iteration sequence generated by the algorithm is bounded; and the algorithm may find a maximally complementary solution to the AVIP. In our analysis on the convergence, we do not need to assume that the solution set of the AVIP is bounded.
Related Topics
Physical Sciences and Engineering
Mathematics
Applied Mathematics
Authors
Na Zhao, Wei Wu,