Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4633650 | Applied Mathematics and Computation | 2009 | 14 Pages |
Abstract
Based on new deformation theorems concerning strongly indefinite functionals, we give some new min–max theorems which are useful in looking for critical points of functionals which are strongly indefinite and satisfy Cerami condition instead of Palais–Smale condition. As one application of abstract results, we study existence of multiple periodic solutions for a class of non-autonomous first order Hamiltonian system(HS)z˙=JHz(t,x,z),(t,x)∈R×Ω,where ̇=d/dt,Ω⊂RNN⩾1 is a bounded domain with smooth boundary ∂Ω∂Ω, z=(p,q)∈RM×RM=R2Mz=(p,q)∈RM×RM=R2M,J=0I-I0,and H(t,x,z)∈C1(R×Ω×R2M,R)H(t,x,z)∈C1(R×Ω×R2M,R).
Keywords
Related Topics
Physical Sciences and Engineering
Mathematics
Applied Mathematics
Authors
Anmin Mao, Shixia Luan,