Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4634156 | Applied Mathematics and Computation | 2008 | 11 Pages |
Abstract
In this paper, the fixed point theory combined with a monotone iterative technique is used to investigate the unique positive solution of a boundary problem for nth-order nonlinear impulsive singular integro-differential equations of mixed type on an infinite interval in a Banach space. The conditions for the existence of a unique positive solution are established. In addition, an explicit iterative sequence for approximating the solution of the boundary value problem is derived together with an error estimate. Furthermore, the conditions of the theorems can be easily verified.
Keywords
Related Topics
Physical Sciences and Engineering
Mathematics
Applied Mathematics
Authors
Haijun Zhang, Lishan Liu, Yonghong Wu,