Article ID Journal Published Year Pages File Type
4634677 Applied Mathematics and Computation 2008 6 Pages PDF
Abstract

This paper aims to show a new family of exact solutions to the unsteady Navier–Stokes equations by using the canonical transformation with complex coefficients. This transformation transforms the system of non-linear partial differential equations to a linear system of partial differential equations with less independent variables. The present results demonstrate that the general real solutions may involve either exp, sin, cos, sinh or cosh under certain conditions depending on the type of the constants in the canonical transformation.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
,