Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4635031 | Applied Mathematics and Computation | 2007 | 12 Pages |
Abstract
We introduce a novel graph class we call universal hierarchical graphs (UHG) whose topology can be found numerously in problems representing, e.g., temporal, spacial or general process structures of systems. For this graph class we show, that we can naturally assign two probability distributions, for nodes and for edges, which lead us directly to the definition of the entropy and joint entropy and, hence, mutual information establishing an information theory for this graph class. Furthermore, we provide some results under which conditions these constraint probability distributions maximize the corresponding entropy. Also, we demonstrate that these entropic measures can be computed efficiently which is a prerequisite for every large scale practical application and show some numerical examples.
Related Topics
Physical Sciences and Engineering
Mathematics
Applied Mathematics
Authors
Frank Emmert-Streib, Matthias Dehmer,