Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4635366 | Applied Mathematics and Computation | 2007 | 32 Pages |
Abstract
We then writeI=â«â«Tâ«G(X,Y,Z)dXdYdZ=â«01â«01-ξâ«01-ξ-ηG(X(ξ,η,ζ),Y(ξ,η,ζ),Z(ξ,η,ζ))â(X,Y,Z)â(ξ,η,ζ)dξdηdζand a composite rule of integration is thus obtained. We next propose the discretisation of the standard tetrahedral region T into p3 tetrahedra Ti (i = 1(1)p3) each of which has volume equal to 1/(6p3) units. We have again shown that the use of affine transformations over each Ti and the use of linearity property of integrals leads to the result:â«â«Tâ«f(x,y,z)dxdydz=âi=1p3â«â«Ticâ«f(x,y,z)dxdydz=âα=1p3â«â«Tα(p)â«f(x(α,p),y(α,p),z(α,p))dx(α,p)dy(α,p)dz(α,p)=1p3â«â«Tâ«H(X,Y,Z)dXdYdZ,whereH(X,Y,Z)=âα=1P3f(x(α,P)(X,Y,Z),y(α,P)(X,Y,Z),z(α,P)(X,Y,Z)),x(α,p)=x(α,p)(X,Y,Z),y(α,p)=y(α,p)(X,Y,Z)andz(α,p)=z(α,p)(X,Y,Z)refer to the affine transformations which map each Ti in (x(α,p), y(α,p), z(α,p)) space into a standard tetrahedron T in the (X, Y, Z) space. We can now apply the two rules earlier derived to the integral â«â«Tâ«H(X,Y,Z)dXdYdZ, this amounts to the application of composite numerical integration of T into p3 and 4p3 tetrahedra of equal sizes. We have demonstrated this aspect by applying the above composite integration method to some typical triple integrals.
Keywords
Related Topics
Physical Sciences and Engineering
Mathematics
Applied Mathematics
Authors
H.T. Rathod, B. Venkatesudu, K.V. Nagaraja,