Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4635391 | Applied Mathematics and Computation | 2007 | 15 Pages |
Abstract
The aim of this paper is to find an accurate and efficient algorithm for evaluating the summation of large sets of floating-point numbers. We present a new representation of the floating-point number system in which a number is represented as a linear combination of integers and the coefficients are powers of the base of the floating-point system. The approach allows to build up an accurate floating-point summation algorithm based on the fact that no rounding error occurs whenever two integer numbers are summed or a floating-point number is multiplied by powers of the base of the floating-point system. The proposed algorithm seems to be competitive in terms of computational effort and, under some assumptions, the computed sum is greatly accurate. With such assumptions, less-conservative in the practical applications, we prove that the relative error of the computed sum is bounded by the unit roundoff.
Related Topics
Physical Sciences and Engineering
Mathematics
Applied Mathematics
Authors
A. Eisinberg, G. Fedele,