Article ID Journal Published Year Pages File Type
4635833 Applied Mathematics and Computation 2007 11 Pages PDF
Abstract

The time fractional diffusion equation is obtained from the standard diffusion equation by replacing the first-order time derivative with a fractional derivative of order β ∈ (0, 1). The fundamental solution for the Cauchy problem is interpreted as a probability density of a self-similar non-Markovian stochastic process related to a phenomenon of sub-diffusion (the variance grows in time sub-linearly). A further generalization is obtained by considering a continuous or discrete distribution of fractional time derivatives of order less than one. Then the fundamental solution is still a probability density of a non-Markovian process that, however, is no longer self-similar but exhibits a corresponding distribution of time-scales.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, , ,